Genetic control of the resistance of common beans to white mold using the reaction to oxalic acid.
نویسندگان
چکیده
The use of genetically resistant cultivars is the best method to reduce losses caused by white mold (Sclerotinia sclerotiorum (Lib.) de Bary). As the best known resistance sources are not adapted, the genetic control of white mold in the common bean must be understood to guide breeding more efficiently. The objective of the present study was to identify the genetic control of the resistance of common bean to white mold by an indirect method using oxalic acid. For this, the descendents of the VC3 cross (susceptible) x G122 (resistant) were used. The trait was assessed by a descriptive key of scores after treatment with oxalic acid. The assessments were made on individual plants (P1, P2, F1, F2 populations and within F2:3 families) in a complete randomized design and on family means where the randomized block design was used with two replications. The oxalic acid method was efficient in detecting genetic differences. The additive effects dominated and genetic control was characterized by partial dominance (d/a = 0.47). At least one resistance gene is involved, although the trait is greatly influenced by the environment. The broad sense heritability at the family mean level (0.47) was greater than that obtained at the individual plant level (0.33), indicating that selection should be more efficient based on progeny mean assessments.
منابع مشابه
Identification of QTLs of resistance to white mold in common bean from multiple markers by using Bayesian analysis.
In this study, we identified simple sequence repeat, ampli-fied fragment length polymorphism, and sequence-related amplified poly-morphism markers linked to quantitative trait loci (QTLs) for resistance to white mold disease in common bean progenies derived from a cross between lines CNFC 9506 and RP-2, evaluated using the oxalic acid test and using Bayesian analysis. DNA was extracted from 186...
متن کاملRelationship Between Oxalate, Oxalate Oxidase Activity, Oxalate Sensitivity, and White Mold Susceptibility in Phaseolus coccineus.
ABSTRACT Sclerotinia sclerotiorum is a necrotrophic pathogen that devastates the yields of numerous crop species, including beans. The disease in common bean and pea is referred to as white mold. We examined the relationship between oxalate, an established virulence factor of S. sclerotiorum, and partial white mold resistance of scarlet runner bean (Phaseolus coccineus). P. coccineus genotypes ...
متن کاملThe Effect of Oxalic Acid, the Pathogenicity Factor of Sclerotinia sclerotiorum on the Two Susceptible and Moderately Resistant Lines of Sunfl ower
Background: One of the main sunfl ower diseases is the white mold Sclerotinia sclerotiorum. The oxalic acid (OA), which is one of the main pathogenicity factors of this fungus, beside the direct toxicity on the host, has other functions such as the disruption of the cell wall and chelating out the calcium ions.Objectives: Regarding the importance of this disease, it is im...
متن کاملKinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts
Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...
متن کاملReaction of Some Sorghum Varieties Against Grain Mold and Fumonisin Accumulation
Grain mold caused by Fusarium verticillioides is one of the most dangerous food and feed safety challenges in sorghum production. The most efficient solution for reducing the hazards of the disease is breeding resistant varieties. In order to find the resistant sorghum varieties, nine sorghum varieties were evaluated for their reaction to F. verticillioides and fumonisin accumulation in their ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2008